(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
p(s(s(x))) →+ s(p(s(x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
plus, p, times, fac

They will be analysed ascendingly in the following order:
p < plus
plus < times
p < times
p < fac
times < fac

(8) Obligation:

TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
p, plus, times, fac

They will be analysed ascendingly in the following order:
p < plus
plus < times
p < times
p < fac
times < fac

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

Induction Base:
p(gen_0':s2_0(+(1, 0))) →RΩ(1)
0'

Induction Step:
p(gen_0':s2_0(+(1, +(n4_0, 1)))) →RΩ(1)
s(p(s(gen_0':s2_0(n4_0)))) →IH
s(gen_0':s2_0(c5_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
plus, times, fac

They will be analysed ascendingly in the following order:
plus < times
times < fac

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n193_0, b)), rt ∈ Ω(1 + n1930 + n19302)

Induction Base:
plus(gen_0':s2_0(0), gen_0':s2_0(b)) →RΩ(1)
gen_0':s2_0(b)

Induction Step:
plus(gen_0':s2_0(+(n193_0, 1)), gen_0':s2_0(b)) →RΩ(1)
s(plus(p(s(gen_0':s2_0(n193_0))), gen_0':s2_0(b))) →LΩ(1 + n1930)
s(plus(gen_0':s2_0(n193_0), gen_0':s2_0(b))) →IH
s(gen_0':s2_0(+(b, c194_0)))

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n193_0, b)), rt ∈ Ω(1 + n1930 + n19302)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
times, fac

They will be analysed ascendingly in the following order:
times < fac

(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
times(gen_0':s2_0(n579_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n579_0, b)), rt ∈ Ω(1 + b·n5790 + b2·n5790 + n5790 + n57902)

Induction Base:
times(gen_0':s2_0(0), gen_0':s2_0(b)) →RΩ(1)
0'

Induction Step:
times(gen_0':s2_0(+(n579_0, 1)), gen_0':s2_0(b)) →RΩ(1)
plus(gen_0':s2_0(b), times(p(s(gen_0':s2_0(n579_0))), gen_0':s2_0(b))) →LΩ(1 + n5790)
plus(gen_0':s2_0(b), times(gen_0':s2_0(n579_0), gen_0':s2_0(b))) →IH
plus(gen_0':s2_0(b), gen_0':s2_0(*(c580_0, b))) →LΩ(1 + b + b2)
gen_0':s2_0(+(b, *(n579_0, b)))

We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).

(16) Complex Obligation (BEST)

(17) Obligation:

TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n193_0, b)), rt ∈ Ω(1 + n1930 + n19302)
times(gen_0':s2_0(n579_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n579_0, b)), rt ∈ Ω(1 + b·n5790 + b2·n5790 + n5790 + n57902)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
fac

(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
fac(gen_0':s2_0(n1124_0), gen_0':s2_0(b)) → *3_0, rt ∈ Ω(b·n11240 + b·n112402 + b2·n11240 + b2·n112402 + n11240 + n112402 + n112403)

Induction Base:
fac(gen_0':s2_0(0), gen_0':s2_0(b))

Induction Step:
fac(gen_0':s2_0(+(n1124_0, 1)), gen_0':s2_0(b)) →RΩ(1)
fac(p(s(gen_0':s2_0(n1124_0))), times(s(gen_0':s2_0(n1124_0)), gen_0':s2_0(b))) →LΩ(1 + n11240)
fac(gen_0':s2_0(n1124_0), times(s(gen_0':s2_0(n1124_0)), gen_0':s2_0(b))) →LΩ(3 + b + b·n11240 + b2 + b2·n11240 + 3·n11240 + n112402)
fac(gen_0':s2_0(n1124_0), gen_0':s2_0(*(+(n1124_0, 1), b))) →IH
*3_0

We have rt ∈ Ω(n4) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n4).

(19) Complex Obligation (BEST)

(20) Obligation:

TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n193_0, b)), rt ∈ Ω(1 + n1930 + n19302)
times(gen_0':s2_0(n579_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n579_0, b)), rt ∈ Ω(1 + b·n5790 + b2·n5790 + n5790 + n57902)
fac(gen_0':s2_0(n1124_0), gen_0':s2_0(b)) → *3_0, rt ∈ Ω(b·n11240 + b·n112402 + b2·n11240 + b2·n112402 + n11240 + n112402 + n112403)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n4) was proven with the following lemma:
fac(gen_0':s2_0(n1124_0), gen_0':s2_0(b)) → *3_0, rt ∈ Ω(b·n11240 + b·n112402 + b2·n11240 + b2·n112402 + n11240 + n112402 + n112403)

(22) BOUNDS(n^4, INF)

(23) Obligation:

TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n193_0, b)), rt ∈ Ω(1 + n1930 + n19302)
times(gen_0':s2_0(n579_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n579_0, b)), rt ∈ Ω(1 + b·n5790 + b2·n5790 + n5790 + n57902)
fac(gen_0':s2_0(n1124_0), gen_0':s2_0(b)) → *3_0, rt ∈ Ω(b·n11240 + b·n112402 + b2·n11240 + b2·n112402 + n11240 + n112402 + n112403)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(24) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n4) was proven with the following lemma:
fac(gen_0':s2_0(n1124_0), gen_0':s2_0(b)) → *3_0, rt ∈ Ω(b·n11240 + b·n112402 + b2·n11240 + b2·n112402 + n11240 + n112402 + n112403)

(25) BOUNDS(n^4, INF)

(26) Obligation:

TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n193_0, b)), rt ∈ Ω(1 + n1930 + n19302)
times(gen_0':s2_0(n579_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n579_0, b)), rt ∈ Ω(1 + b·n5790 + b2·n5790 + n5790 + n57902)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(27) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
times(gen_0':s2_0(n579_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n579_0, b)), rt ∈ Ω(1 + b·n5790 + b2·n5790 + n5790 + n57902)

(28) BOUNDS(n^3, INF)

(29) Obligation:

TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n193_0, b)), rt ∈ Ω(1 + n1930 + n19302)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(30) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n193_0, b)), rt ∈ Ω(1 + n1930 + n19302)

(31) BOUNDS(n^2, INF)

(32) Obligation:

TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))

Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(33) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

(34) BOUNDS(n^1, INF)